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Figure 1: PaperEdge unwarping results. The top row is the casual photos of documents. The bottom row is the unwarping
results by our proposed model: PaperEdge. PaperEdge utilizes both synthetic and real document images in training. This model
is excellent at unwarping documents in different deformation and content. The unwarped documents from PaperEdge achieves
16.2% Word Error Rate reduction in the OCR task, compared to the results from the previous unwarping method [Das et al.
2019].

ABSTRACT
Document image unwarping is important for document digitization
and analysis. The state-of-the-art approach relies on purely syn-
thetic data to train deep networks for unwarping. As a result, the
trained networks have generalization limitations when testing on
real-world images, often yielding unsatisfying results. In this work,
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we propose to improve document unwarping performance by incor-
porating real-world images in training. We collected Document-in-
the-Wild (DIW) dataset contains 5000 captured document images
with large diversities in content, shape, and capturing environ-
ment. We annotate the boundaries of all DIW images and use them
for weakly supervised learning. We propose a novel network ar-
chitecture, PaperEdge, to train with a hybrid of synthetic and real
document images. Additionally, we identify and analyze the flaws of
popular evaluationmetrics, e.g., MS-SSIM and Local Distortion (LD),
for document unwarping and propose a more robust and reliable er-
ror metric called Aligned Distortion (AD). Training with a combina-
tion of synthetic and real-world document images, we demonstrate
state-of-the-art performance on popular benchmarks with compre-
hensive quantitative evaluations and ablation studies. Code and data
are available at https://github.com/cvlab-stonybrook/PaperEdge.
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1 INTRODUCTION
Compared to traditional paper documents, digital documents are
much easier to archive, edit, sign, and share. Nowadays, more and
more physical documents are digitized for efficient workflows.
During the COVID-19 pandemic, digital documents also play a
vital role for business as physical contact is restricted. Ubiquitous
smartphones, equipped with high-quality cameras, have made pho-
tographing a document the standard way to digitize it. However,
documents in these photos are always distorted due to uncontrolled
paper geometry and capturing condition. These distortions hamper
information extraction from these documents, decrease readabil-
ity, and break downstream automatic document analysis pipelines
such as layout extraction and Optical Character Recognition (OCR),
which were built to process only document scans.

Both model-driven and data-driven methods have been proposed
to address document rectification. Model-driven methods utilize
explicit geometric models to fit the deformed document surface.
They usually involve slow optimization steps to obtain unwarped
results, which are unsuitable for real-time applications. Recently,
data-driven methods have gained popularity. These methods train
an unwarping neural network to map a casual document image to
a deformation field that warps the deformed input into a rectified,
scan-like result. Such networks can achieve real-time performance.

The training data plays a central role in building a well gen-
eralizable unwarping network in the data-driven setting. Ideally,
one would want to collect sufficient real-world training data for
supervised learning: captured images of distorted documents and
ground truth deformations (usually represented by some image
warping functions). However, this type of data is hard to obtain
due to difficulties in large-scale accurate 3D reconstruction and
dense registration in the wild. Previous work [Das et al. 2019; Ma
et al. 2018] resorted to training on synthetic document images with
ground truth warping fields. Existing data synthesis schemes de-
form a flat document with a known warping field. A network is
then trained to regress the warping field from the deformed image,
which is subsequently used to “unwarp” the image into a flat docu-
ment. However, synthesizing hyper-realistic warped, creased, and
crumpled document paper is very challenging due to the complexity
in modeling geometry and material. Images from state-of-the-art
synthetic document dataset [Das et al. 2019] are visibly different

from real-world images. In fact, we also demonstrate in the sup-
plementary material, there is data redundancy in the synthetic
dataset. More specifically, after training with 32,000 synthetic im-
ages (32% of the entire dataset), the performance improvement from
additional synthetic training data becomes insignificant.

We propose to improve document unwarping by introducing
PaperEdge, the first unwarping model trainable with real-world
document images. It is non-trivial to incorporate real images in
the prior supervised learning approaches [Li et al. 2019; Markovitz
et al. 2020] due to the absence of ground truth deformation, which
is difficult to obtain for real-world documents. PaperEdge enables
learning from both synthetic and real-world training images: For
synthetic data, we train in a supervised manner using ground truth
deformation. For real-world images without ground truth defor-
mation, we utilize the document edges [Gumerov et al. 2004; Tsoi
and Brown 2007] as weak supervision. Document edges reflect a
global rectangular shape deformation; therefore, can be used as
a training signal. They are also straightforward to annotate with
off-the-shelf image segmentation tools [Rother et al. 2004]. To facil-
itate the proposed training scheme, we collected the Documents In
the Wild (DIW) dataset with 5000 document photos and their edge
annotations.

Moreover, we introduce a texture-based warping model to fur-
ther enhance the results. Document image texture provides valuable
cues for unwarping because document content is usually structured.
As edges are effective for global image unwarping, the texture is ben-
eficial for recovering local distortions. We propose a self-supervised
learning strategy [Gidaris et al. 2018; Zhang et al. 2019] to train the
texture-aware component. In practice, we augment each training
sample with a randomly generated deformation perturbation to
form a training image pair. After that, we train the network in a
siamese style [Koch et al. 2015] using these pairs.

We also demonstrate that popular quantitative evaluation cri-
teria such as MS-SSIM and Local Distortion (LD) are not ideal for
evaluating document image unwarping. We show that (1) MS-SSIM
is very sensitive to perceptually negligible perturbations, and (2)
LD calculation accounts for a large amount of unimportant error
at textureless regions. To address this issue, we introduce Aligned
Distortion (AD), a more robust quantitative measure for evaluating
document unwarping performance.

We summarize our contributions as follows: (1) we propose a
novel network architecture for learning document unwarping. It
is the first method that can be trained with both synthetic doc-
ument images and camera-captured casual document images; (2)
we propose Aligned Distortion (AD) – a robust evaluation metric
for document unwarping; (3) we contribute a new document im-
age dataset with 5000 in-the-wild document images and their edge
annotations; (4) we achieve state-of-the-art performance on the
benchmark [Ma et al. 2018] under all evaluation criterion.

2 PREVIOUS WORK
Document unwarping has been extensively studied in the literature.
We roughly categorize prior work into model-driven methods and
data-driven methods.
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Figure 2: PaperEdge system pipeline. Our system consists of two subnetworks: Enet and Tnet. Enet provides a coarse, document
edge-based unwarping that rectifies the overall shape; Tnet further enhance the result with local deformation learned from
document texture.

2.1 Model-driven methods
Model-driven methods usually consist of two-steps: (1) estimate
document surface deformation and (2) flatten the deformed surface.

Surface Deformation Estimation. [Meng et al. 2014] used laser
beams to estimate a developable surface. [Courteille et al. 2007]
applied Shape from Shading [Wada et al. 1997] on documents.
Both [Ulges et al. 2004] and [You et al. 2017] utilized multiple
images to reconstruct the 3D shape. Shape from Template can also
be used for estimate surface shape as shown by [Bartoli and Collins
2013; Chhatkuli et al. 2014; Khan et al. 2014]. For document images,
several methods [Ezaki et al. 2005; Kil et al. 2017; Liang et al. 2008;
Liu et al. 2015; Lu and Tan 2006; Meng et al. 2018; Ulges et al. 2004]
have been proposed to estimate shape from document components
such as text lines, blocks, and figures, etc.

Surface Flattening. [Kim et al. 2015] and [Kil et al. 2017] mod-
eled the surface as a Generalized Cylindrical Surface (GCS) and
demonstrated that the deformation is invertible in parameter space.
[Liang et al. 2008] and [Meng et al. 2015] both approximated the
surface with finite number of planar strips on the tangent planes.
[Tian and Narasimhan 2011], and [Meng et al. 2018] built a sparse
correspondence between a projected mesh on the input image and
a imaginary flattened image to recover the texture. [You et al. 2017]
used conformal mapping to flattened the mesh.

2.2 Data-driven methods
Recently, deep neural network have been widely adopted to learn
paper unwarping and rectification. [Shafait and Breuel 2007] re-
leased a dataset of 102 binarized images. [Pumarola et al. 2018]
utilized a CNN to estimate the vertex coordinate on a regular mesh
grid for a deformed surface. [Jiménez et al. 2018] embedded the
SfT framework in a CNN. [Das et al. 2017] trained a CNN to de-
tect the folding edges. [Ma et al. 2018] proposed an end-to-end
unwarping network trained on randomly perturbed 2D document
images. [Li et al. 2019] extended this idea with a local/global two-
branch network. [Liu et al. 2020] utilized gated network blocks
and an adversarial loss to improve the results. [Xie et al. 2020]
estimated the deformation offset instead of the absolute deforma-
tion field and incorporated a local smooth constraint. [Das et al.
2019] proposed DewarpNet to explicitly modeling the deformed 3D
shape and introduced the Doc3D dataset with about 100K rendered
images. [Markovitz et al. 2020] followed similar data synthesis

pipeline and further augmented DewarpNet with text block angle
supervision. [Das et al. 2021] proposed a patch-wise approach for
better local unwarping. More recently, [Feng et al. 2021] introduced
Transformers [Vaswani et al. 2017] as a stronger backbone.

State-of-the-art synthetic datasets such as Doc3D provide ground
truth deformations for supervised training. However, the visual
discrepancy between synthetic data and real data is very signifi-
cant. Unlike prior work, our framework can utilize real data for
training with inexpensive paper edge annotations, which signifi-
cantly improves the network’s generalization ability. As a result,
we achieve state-of-the-art performance on unwarping casual docu-
ment images by utilizing both synthetic and real images. We noticed
a concurrent study [Xue et al. 2022] that also exploited real world
images to improve unwarping. It required document scans as anno-
tations but scanners are not always available. While we propose to
use more accessible document boundary annotations.

3 METHOD
Our system PaperEdge contains two sub-networks that unwarp an
input document image in two steps (Fig. 2.): The first sub-network
“Enet” unwarps the input using document edge information. The
output of Enet is a warping field for a coarse scale, “global” deforma-
tion that warps the input document image into a shape with desired
boundary property, i.e., a rectangle. The second sub-network, “Tnet”
outputs a fine-scale, “local” warping field relying on document
texture. It corrects the local deformation of the previous output,
straightens the text line, and rectifies the content shape.

Formally, given a deformed document image 𝑥 , the unwarping
result 𝑥𝑡 is obtained by

𝑥𝑡 = 𝜙 (𝜙 (𝑥, 𝑑𝐸 ), 𝑑𝑇 ), (1)

where 𝜙 (𝑎1, 𝑎2) is a 2D warping function that warps 𝑎1 based on
a deformation field 𝑎2. Note that 𝑎1 can be an image or another
deformation field [Ashburner 2007]. In Eq. 1, 𝑑𝐸 is the edge-based
deformation field outputted by Enet, and 𝑑𝑇 is the texture-based
deformation field outputted by Tnet. A deformation field defines
a backward mapping [Chen et al. 1999], which determines the
position in the input image to be sampled and mapped to the target.

In this section, we describe Enet and Tnet, including their net-
work architectures and training methods. The training methods of
using synthetic and real-world data are different as they provide
different training signals. We will describe them separately and
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Figure 3: Cycle consistent mask loss in Enet. We infer 𝑑−1
𝐸

by differentiable spline interpolation from 𝑑𝐸 . The forward
cycle loss is to warp the ground truth document mask 𝑦 with
𝑑𝐸 to match the rectangular mask𝑚 (red arrows). The back-
ward cycle loss is to warp𝑚 with 𝑑−1

𝐸
to match the ground

truth mask 𝑦 (green arrows).

show that our network design allows hybrid training with both
data types.

3.1 Enet: Edge-based Unwarping
Enet is a fully-convolutional encoder-decoder. The encoder has 6
residual blocks [He et al. 2016] and each block down-samples the
input feature map by a factor of 2. The decoder has 4 residual blocks
and each block up-samples the input feature map by a factor of 2.
For all our experiments, we used 256× 256× 5 (RGB of input image
𝑥 + coordinates [Liu et al. 2018]) as Enet input and the bottleneck
feature map is 4×4×512. The deformation field (backwardmapping)
output from the decoder is 64 × 64 × 2.

Supervised training on synthetic images. Given a synthetic de-
formed document image 𝑥 and its ground truth deformation field
𝑑∗, we train Enet in a fully supervised manner. Particularly, assum-
ing 𝑑∗ ∈ R𝑁×𝑁×2 where 𝑁 is the spatial resolution, the boundary
elements of 𝑑∗: {𝑑∗ (𝑖, 1), 𝑑∗ (𝑖, 𝑁 ), 𝑑∗ (1, 𝑗), 𝑑∗ (𝑁, 𝑗) | 𝑖, 𝑗 ∈ [1, 𝑁 ]}
indicate the coordinates of document boundaries in the input image.
𝑑𝐸 has the same size as 𝑑∗. We train Enet to match the boundary
elements of 𝑑𝐸 and 𝑑∗ with the following loss:

𝐿𝑆𝐸 = |𝐵(𝑑𝐸 ) − 𝐵(𝑑∗) |1 . (2)

where 𝐵 is a function extracting the boundary of a deformation
field. These boundary elements are sufficient to infer the edge-based
deformation field: the interior of 𝑑𝐸 : {𝑑𝐸 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [2, 𝑁 − 1]} is
linearly interpolated from the boundaries.

Weakly supervised training on real images. Given a real-world
warped document image 𝑥 with its segmentation mask 𝑦, which
is an easy-to-obtain edge map representation, we trained Enet in
a weakly supervised manner. A loss on the segmentation mask is
defined as:

𝐿𝑀 = |𝜙 (𝑦,𝑑𝐸 ) −𝑚 |1, (3)

Tnet

: Unwarping 
result from Enet

: Perturbation 
of by 

்

்

Figure 4: Self-supervised training for Tnet. 𝑥 is the output
from Enet. We warp 𝑥 with a known deformation pertur-
bation 𝜏 , obtaining 𝑥 ′. Tnet is trained in a siamese network
manner. Though 𝑑𝑇 and 𝑑 ′

𝑇
are unknown, they are associated

by 𝜏 in 𝐿𝑆 .

where 𝑑𝐸 is the output from Enet.𝑚 is a rectangular mask. Ideally,
a successfully trained 𝑑𝐸 can rectify the document image 𝑥 and
warp the mask 𝑦 to a rectangle𝑚. However, there is a trivial but
wrong solution to this training loss: 𝑑𝐸 could be a simple scale-
up transformation that enlarges the mask region in 𝑦 to fill the
whole image area and result in the sought rectangular mask 𝑚.
Inspired by ProAlignNet [Veeravasarapu et al. 2020], we introduce
a cycle-consistent segmentation mask loss to address this problem:

𝐿𝑀 = |𝜙 (𝑦,𝑑𝐸 ) −𝑚 |1 + |𝜙 (𝑚,𝑑−1𝐸 ) − 𝑦 |1, (4)

where𝑑−1
𝐸

is the inverse deformation field of𝑑𝐸 . Both𝑑𝐸 and𝑑−1
𝐸

define a mapping between two sets of pixel coordinates: P = {p𝑖 }
from the source image and Q = {q𝑖 } from the target. The domain
of 𝑑𝐸 is the target image while the domain of 𝑑−1

𝐸
is the source

image. In other words, 𝑑𝐸 is a backward mapping and 𝑑−1
𝐸

a forward
mapping. Thus 𝑑−1

𝐸
defines a function 𝑓 (p𝑖 ) = q𝑖 .

In order to approximate 𝑑−1
𝐸

from 𝑑𝐸 , we use polyharmonic
splines to fit this function:

𝑓 (p) =
𝑛∑︁
𝑖

𝑤𝑖𝜑 ( |p − q𝑖 |2) + v𝑇 p + b, (5)

where 𝜑 (𝑟 ) = 𝑟 is the polyharmonic spline radial basis function.
𝑛 is the number of the correspondences on the document edges.
Parameters𝑤𝑖 , v, and b are obtained by minimizing

∑𝑛
𝑖 |𝑓 (p𝑖 ) − q𝑖 |

which has a closed form solution. Then𝑑−1
𝐸

= 𝑓 (p𝑖 ),∀𝑖 in the source
image. This cycle-consistent mask loss is illustrated in Fig. 3.

3.2 Tnet: Texture-based Unwarping
Tnet and Enet share the same network architecture but not weights.
The input to Tnet is the unwarped image using the output of
Enet 𝑥 = 𝜙 (𝑥, 𝑑𝐸 ). The output of Tnet is a deformation field 𝑑𝑇 ∈
R64×64×2. After a step of coarse edge-based warping enabled by
Enet, Tnet further improves the warping results by utilizing texture
information for training.
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Supervised training on synthetic images. With synthetic data,
we obtain the ground truth texture-based deformation field 𝑑∗

𝑇
by separating 𝑑𝐸 from ground truth deformation 𝑑∗. We utilize
the associative property of the warping function [Ashburner 2007;
Lin and Lucey 2017]: 𝜙 (𝜙 (𝑎, 𝑏), 𝑐) = 𝜙 (𝑎, 𝜙 (𝑏, 𝑐)). Per Eq. 1, we
can derive 𝜙 (𝑥, 𝑑∗) = 𝜙 (𝜙 (𝑥, 𝑑𝐸 ), 𝑑∗𝑇 ) = 𝜙 (𝑥, 𝜙 (𝑑𝐸 , 𝑑∗𝑇 )). Hence
𝑑∗ = 𝜙 (𝑑𝐸 , 𝑑∗𝑇 ) and 𝑑

∗
𝑇
= 𝜙 (𝑑−1

𝐸
, 𝑑∗) where 𝑑−1

𝐸
is obtained in Eq. 4

and 5. The loss function is

𝐿𝑆𝑇 = |𝑑𝑇 − 𝑑∗𝑇 |1 . (6)

Self-supervised training on real images. While training with real-
world images where ground truth is not available, we train Tnet in
a self-supervised manner. Our method is partially inspired by the
Auto-Encoding Transformation (AET) [Zhang et al. 2019]. Given
an input image 𝑥 , we apply a random deformation perturbation 𝜏

to 𝑥 to obtain a perturbed image 𝑥 ′. Denoting the deformation field
that unwarps 𝑥 ′ as 𝑑 ′

𝑇
, the ground truth of neither 𝑑𝑇 nor 𝑑 ′

𝑇
is

available. However, 𝑥 and 𝑥 ′ must be unwarped to the same image
as they were warped from the same original one. Thus we can train
Tnet by minimizing:

𝐿𝐴 =|𝜙 (𝑥, 𝑑𝑇 ) − 𝜙 (𝑥 ′, 𝑑 ′𝑇 ) |1
=|𝜙 (𝑥, 𝑑𝑇 ) − 𝜙 (𝜙 (𝑥, 𝜏), 𝑑 ′𝑇 ) |1 . (7)

However, directly optimizing Eq. 7 yields poor results due to
local minima. Therefore we simplify the above equation using the
relation 𝜙 (𝜙 (𝑥, 𝜏), 𝑑 ′

𝑇
) = 𝜙 (𝑥, 𝜙 (𝜏, 𝑑 ′

𝑇
)) Thus Eq. 7 is rewritten as:

𝐿𝐴 = |𝜙 (𝑥, 𝑑𝑇 ) − 𝜙 (𝑥, 𝜙 (𝜏, 𝑑 ′𝑇 )) |1,∀𝑥 . (8)

Because Eq. 8 holds for all 𝑥 , optimizing the above function is
equivalent to optimizing

𝐿𝐴 = |𝑑𝑇 − 𝜙 (𝜏, 𝑑 ′𝑇 ) |1, (9)

as shown in Fig. 4. Similar to Eq. 4, we add a cycle consistency loss
to Eq. 9. The final self-supervised learning objective is:

𝐿𝐴 =|𝑑𝑇 , 𝜙 (𝜏, 𝑑 ′𝑇 ) |1 + |𝜙 (𝜏−1, 𝑑𝑇 ), 𝑑 ′𝑇 ) |1 . (10)

𝜏 is constructed offline. We randomly select a point within the
document area and move it in a random direction by a random
offset as long as it is still within the document area. The deformation
field for all the points is then interpolated by polyharmonic splines,
which is similar to Eq. 5. This process is repeated a random number
of 𝑛 ∈ [1, 5] times to obtain 𝜏 . The inverse deformation field 𝜏−1 is
easy to obtain from 𝜏 following the same method that computes
𝑑−1
𝐸

from 𝑑𝐸 in Eq. 4.

4 DOCUMENTS-IN-THE-WILD DATASET
To demonstrate the effectiveness of real-world images, we built
the Documents In the Wild (DIW) dataset. Physical documents
are ubiquitous. The DIW dataset contains 5000 photos of about
600 daily-life documents, including 300 receipts, 10 books, 200
document sheets (academic papers, magazines, and advertising
fliers), 50 product labels (ingredient/nutrition labels, clothes wash
labels), etc. The annotation tool for edge annotations is created
based on GrabCut [Rother et al. 2004]. On average, it only takes
around 5 seconds to annotate one image. The final image is cropped
based on the mask and resized to 512 × 512.

Table 1: The number of images in each document type in
DIW.

Type Receipt Book Sheet Label
Number of images 2360 501 1823 316

Figure 5: DIW dataset: Sample images and the annotated
document masks in the DIW dataset.

During data collection, we also annotate their types with one
of the following labels: “receipt”, “book”, “sheet”, and “label”. We
collected this meta information because we observed the document
types provide useful prior about deformation. For example, the
most common deformation on book pages is a simple curl, while
receipts are often folded or crumpled. Thus, in the future, we could
potentially model the deformation conditioned on document types.
This prior is not used in this paper, but we believe this informa-
tion will benefit future research. The number of each document
type in the DIW dataset is shown in table 1. Sample images and
corresponding document edge annotations (as masks) are shown
in Fig. 5.

5 EXPERIMENTS
We train PaperEdge using our DIW dataset and synthetic dataset
Doc3D [Das et al. 2019]. Doc3D contains 100,000 deformed docu-
ment images and the corresponding annotations such as albedo,
depth, and ground truth deformation etc. FollowingDewarpNet [Das
et al. 2019], we use 88,000 labeled instances for training and the
rest for validation. In DIW, all 5,000 images and the corresponding
document mask annotations are used.

We evaluate PaperEdge on a popular benchmark dataset [Ma
et al. 2018] with 130 in-the-wild document images of various de-
formations. In addition to the popular image similarity evaluation
metrics such as MS-SSIM and Local Distortion (LD), we propose a
more robust and reliable error measure for document unwarping
called Aligned Distortion (AD). In this section, we first analyze the
drawbacks of previous metrics and introduce our robust metric
AD. We then compare our method with previous work using all
evaluation metrics as well as OCR performance.

5.1 AD: A Robust Evaluation Metric
To quantitatively evaluate unwarping methods, Ma et al. [Ma et al.
2018] and Das et al. [Das et al. 2019] relied on MS-SSIM and LD to
measure image similarity between unwarping results and ground-
truth flat document images. However, we observe that these two
metrics can sometimes be unreliable when measuring deformation
errors (Fig. 6). The shift and scale sensitivity of MS-SSIM was pre-
viously noticed in [Markovitz et al. 2020]. In Fig. 6, we observe that
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Table 2: Unwarping performance on benchmark. AD is the proposed image similarity metric. CER, WER and ED are OCR
metrics.

Method AD ↓ CER ↓ WER ↓ ED ↓ MS-SSIM ↑ LD ↓

Model-driven methods
Tian et al. [Tian and Narasimhan 2011] 2.112 0.675 0.797 2911 0.130 33.69
Kim et al. [Kim et al. 2015] 0.903 0.287 0.412 1293 0.348 19.51
Kil et al. [Kil et al. 2017] 0.679 0.270 0.391 1205 0.401 12.84

Data-driven methods

Ma et al. [Ma et al. 2018] 0.700 0.271 0.451 1197 0.439 10.90
Li et al. [Li et al. 2019] 0.738 0.297 0.417 1289 0.383 12.83
Das et al. [Das et al. 2019] 0.426 0.257 0.376 1131 0.469 8.98
PaperEdge𝐷 0.416 0.252 0.363 1108 0.467 8.79

PaperEdge𝐷𝐷 0.392 0.221 0.315 1010 0.470 8.50

1) 2) 3)

MS-SSIM 0.67 0.49

AD 0.084 0.085

95.2% flow magnitudes are on document margin (region 
inside red dashed line), which is a textureless area.

4) 5) 6) 7)

Flow magnitudes on 
document margin

LD AD

85% 2%

Figure 6: MS-SSIM and LD failures. 1) and 4) are document
scans. 2) and 5) are unwarped results. 3) is 2) translated 10
pixels upward. Although 2) and 3) are both visually plausible
unwarping results, they have large discrepancy in MS-SSIM.
However, AD is more reliable and robust to this perturbation.
6) shows dense SIFT flow magnitudes, which are used to
compute LD. 85% of the total magnitude of the computed
flow is within document margin areas (regions within the
red dashed lines), where distortions are imperceptible. Only
2% of the AD flow magnitude in 7) is on the margin.

highly subtle image differences can result in large MS-SSIM discrep-
ancy. LD, on the other hand, is based on dense SIFT flow [Liu et al.
2011], which sometimes generates large flow fields on textureless
areas (Fig. 6 b)). These areas are unimportant for document unwarp-
ing evaluation but can cause unwanted large error contributions.

To address these issues, we propose Aligned Distortion (AD): a
newmetric for document unwarping that overcomes the drawbacks

of both MS-SSIM and LD. Formally, AD is defined as:

𝐴𝐷 =
1
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖

pi − T∗ (pi + vi)
2
2, (11)

where 𝑁 is the total number of pixels. 𝑤𝑖 ∈ [0, 1] is the normal-
ized gradient magnitude of pixel 𝑖 on the document scan. pi is
the coordinates of the pixel. vi is the dense SIFT flow on pixel 𝑖 .
Thus pi + vi denotes the corresponding pixel coordinate on the un-
warped output. T∗ is an optimal constrained affine transformation

T =


𝑆𝑥 0 𝑇𝑥
0 𝑆𝑦 𝑇𝑦
0 0 1

 such that:

min
𝑇

∑︁
𝑖

| |pi − T(pi + vi) | |22,∀𝑖 if𝑤𝑖 > 0.5, (12)

where 𝑆𝑥,𝑦 , 𝑇𝑥,𝑦 are scale and translation respectively. Eq. 12 has a
closed form least squares solution.

AD is advantageous: AD is more robust. It aligns the unwarped
image and ground truth scan by unifying translation and scale (T∗)
before computing the distortion. The alignment step overcomes
the drawback of MS-SSIM being sensitive to very subtle global
transformations, which generally do not affect the document read-
ability or downstream applications (Fig. 6). AD is more accurate.
It weighs the error based on gradient magnitude (𝑤 ). Compared
to 𝐿𝐷 = 1

𝑁

∑𝑁
𝑖=1 ∥vi∥

2
2, this overcomes the drawback of LD which

hallucinates errors in textureless regions (Fig. 6). Due to space con-
straints, we provide a more detailed analysis of these metrics using
ablation studies in the supplementary material. However, we pro-
vide comprehensive evaluations with experimental results for all
metrics, including MS-SSIM, LD, and AD.

We also use OCR performance to evaluate document unwarping
quality. We select 45 text-rich images from the benchmark and pro-
cess them with the Tesseract 4.1.1 OCR engine [Smith 2007] with
LSTM backbone. We use the recognition results on the document
scans as ground truth, and evaluate OCR performance with Char-
acter Error Rate (CER), Word Error Rate (WER), and Edit Distance
(ED) [Navarro 2001].

5.2 Baseline Approaches
We comparewith 3model-drivenmethods: 1) [Tian andNarasimhan
2011], 2) [Kim et al. 2015], and 3) [Kil et al. 2017]. We also compare
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Input [Tian and
Narasimhan 2011]

[Kim et al. 2015] [Kil et al. 2017] [Ma et al. 2018] [Li et al. 2019] [Das et al. 2019] PaperEdge Doc scan

Figure 7: Qualitative unwarping comparison on the benchmark dataset. Our approach generates visually pleasing results with
better structure in the content layout and less distorted textlines. Zoom in for details.

with 3 data-driven methods: 4) DocUNet [Ma et al. 2018], 5) [Li
et al. 2019], and 6) DewarpNet [Das et al. 2019], which is state-of-art
unwarpingmodel. We used code provided by the authors to produce
the results. The results from 2), 3), and 5) are not cropped. For a fair
comparison, we developed a UNet-based [Ronneberger et al. 2015]
auto-cropping system that preserves the largest IoU document area
compared to the ground truth document scans for these methods.
AD is more robust to inaccurate segmentation because AD aligns
the unwarped results to the document scans before computing the
distortion. We exclude [Markovitz et al. 2020] from the comparison
because neither the code nor the data is available.

5.3 Experimental Results
Learning with only synthetic data. We first demonstrate the ef-

fectiveness of our network architecture by training with only syn-
thetic data. We train PaperEdge on Doc3D [Das et al. 2019] with
ground truth deformation: Enet is trained with 𝐿𝑆𝐸 in Eq. 2 and Tnet
is trained with 𝐿𝑆𝑇 in Eq. 6. The result is in table 2 as PaperEdge𝐷 .
Comparing to previous state-of-the-art [Das et al. 2019], PaperEdge
achieves slightly better AD and LD, marginally worse but compara-
ble MS-SSIM performance. In OCR evaluation, PaperEdge performs
better than [Das et al. 2019] in all related metrics (ED, CER, and
WER). This indicates that our network better maintains the read-
ability of these documents after the unwarping.

Learning with both synthetic and real data. The significance of
our network design is the capability to utilize both synthetic and
real data. To demonstrate the full potential of our method, we train
PaperEdge𝐷𝐷 with images from both Doc3D and DIW: Enet is
trained with 𝐿𝑆𝐺 + _𝐿𝑀 and Tnet is trained with 𝐿𝑆𝐿 + _𝐿𝐴, _ = 0.1.

In table 2, PaperEdge𝐷𝐷 achieves the best results in all image
evaluation metrics. PaperEdge𝐷𝐷 also achieves the best OCR per-
formance. This demonstrates that our networks are capable of
learning from real-world training images and achieves superior
generalization ability compared to previous art.

We also provide additional experimental analyses in the supple-
mentary material: We show a categorical analysis on the benchmark
dataset to provide better insights on how training with real-world

images is especially beneficial for hard-to-synthesis document de-
formation types. We also present the the long tail pattern of syn-
thetic data and effectiveness of real data.

It is worth noting that, by utilizing a strong Transformer based
backbone, [Feng et al. 2021] achieved a comparable AD of 0.398. As
to the model size, [Feng et al. 2021] has 26.9M parameters, [Das et al.
2019] is 86.9M, while PaperEdge has 36.4M. We would like to stress
that our contributions are orthogonal to [Markovitz et al. 2020]
and [Feng et al. 2021]: they are still trained on the synthetic data as
our baseline [Das et al. 2019] did. We propose a novel approach to
incorporate the real world images in training, which is not explored
in the previous work. We expect better performance using stronger
backbones such as the architectures from NAS [Zoph and Le 2017]
or Transformers.

5.4 Ablation Studies
We perform ablation studies to support our choices on system
design and loss functions. Specifically, we analyze individual con-
tributions of each component (Enet and Tnet trained on synthetic
and real-world images) using the benchmark dataset.

We evaluate the contribution of each training component via
unwarping performance on the DocUNet benchmark [Ma et al.
2018]. To expedite training, we use a slim version of PaperEdge
by reducing the intermediate layer depth. The slim PaperEdge has
only 14.8M parameters. The result is summarized in table 3. Un-
warping with only Enet trained on only synthetic data yields AD
of 0.501. With additional 5,000 real images from DIW for training,
the performance of Enet increases to 0.481 AD. This improvement
demonstrates the effectiveness of training Enet using real-world
images. Adding Tnet trained only on synthetic data significantly
improves the performance, decreasing AD to 0.424. This improve-
ment is because Tnet fixes local distortions that Enet does not
sufficiently address. Additionally, with 5,000 real-world images in
training Tnet, our method (PaperEdge𝐷𝐷 ) performs the best among
all the training schemes.
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Table 3: Ablation studies on different network components.
We start evaluating a single Enet trained on Doc3D, then we
fine-tune Enet with DIW. After that, we add Tnet trained on
Doc3D to the pipeline, and at last, we fine-tune Tnet with
DIW. The last configuration is the same as PaperEdge𝐷𝐷 in
table 2 with a reduced capacity.

Method AD ↓
Enet (Doc3D) 0.501
Enet (Doc3D + DIW) 0.481
Enet (Doc3D + DIW) + Tnet (Doc3D) 0.424
Enet (Doc3D + DIW) + Tnet (Doc3D + DIW) 0.413

Input Enet Tnet Input Enet Tnet

Figure 8: PaperEdge on real world images. In each image
triplet, the first image is the input, the second one is the
output from Enet, and the last image is the final output of
PaperEdge, which is from Tnet. Tnet corrects the local dis-
tortion and significantly improves the visual quality.

5.5 Qualitative Results
In Fig. 7, we present the unwarped results on the benchmark and
compare with previous methods. [Tian and Narasimhan 2011] fails
when text line tracking misses a region, outputting a black area. [Kil
et al. 2017] is systematically better than [Kim et al. 2015] as it utilizes
more visual cues. Working with patches, [Li et al. 2019] cannot

Input DewarpNet [Das
et al. 2019]

Tnet

Figure 9: Unwarping partial documents. We compare the
PaperEdge Tnet to DewarpNet in unwarping partially visible
documents. Tnet outputs more visually appealing results
with horizontally straight textlines.

correct large deformations. [Ma et al. 2018] often introduces more
distortions in the unwarped images. Our method improves upon
DewarpNet [Das et al. 2019] in better reconstructing horizontally
straight text lines and vertically straight text columns.

We show more qualitative results from PaperEdge on real-world
images in Fig. 8 and compare the intermediate output from Enet to
the final refined output from Tnet. The output of Enet presents an
edge-based unwarping: the document fills the image plane, and the
background is eliminated. Tnet further flattens the remaining dis-
tortion in the Enet output. PaperEdge achieves desirable unwarping
results on multiple document types in multiple deformations.

In Fig. 9, we demonstrate the utility of the Tnet in unwarping
partial documents. Due to texture-based training of Tnet, it can
generalize to incomplete document images and better rectify partial
documents than previous work.

6 CONCLUSION AND FUTUREWORK
We presented PaperEdge, a novel learning framework for document
unwarping. It is the first network that can be trained with both
synthetic document images and camera-captured, casual, real world
document images. We also proposed Aligned Distortion – a new
unwarping performance metric, which overcomes the drawback
of previously used MS-SSIM and LD. We collected the Document
In the Wild (DIW) dataset of document images in the wild with
edge annotations. Training PaperEdge with Doc3D dataset and DIW
dataset, we achieve the state-of-the art results in all image similarity
metrics and OCR evaluation. In addition, we show that the flexibility
of our framework allows it to adapt to new types of data such as
partially occluded document images. PaperEdge also has certain
limitations because it is a 3D agnostic method. The unwarping
result is not guaranteed to be physically correct. PaperEdge also
failed to handle some complex crumpled paper cases. With the
increasing availability of 3D capturing devices in smartphones in
the future, we plan to incorporate a mechanism for learning explicit
3D into PaperEdge to further improve its performance.
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