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Abstract— We present a method to reconstruct faces from
a single portrait image. While traditional face reconstruction
methods fit low-dimensional 3D morphable models to images,
we train a deep network to regress depth from a single image
directly. We do so by combining supervised losses on synthetic
data with indirect supervision on real data using a novel
multi-view photo-consistency loss. Furthermore, we regularize
the depth estimation using a 3D morphable model (3DMM).
We demonstrate that this leads to results that preserve facial
features, capture facial geometry that goes beyond 3DMMs, and
is also robust to viewpoint conditions. We evaluate our method
on various datasets and via ablation studies, and demonstrate
that it outperforms previous work significantly.

I. INTRODUCTION

Monocular 3D face reconstruction is an extensively stud-
ied problem with a wide variety of applications including
face recognition [46], virtual avatar creation [51], image edit-
ing [3] and facial performance transfer [45], [24]. Traditional
3D face reconstruction methods represent facial geometry
(and texture) using low-dimensional linear 3D morphable
models (3DMM) [3], [8]. The 3DMM parameters can be
estimated either by optimizing the geometric and photometric
alignment of the 3DMM to the input image [3], [12], [45],
[57] or by deep learning-based methods that regress 3DMM
parameters from an image [33], [46], [44]. 3DMMs offer a
low-dimensional and regularized shape space at the cost of
limited expressive power. Thus, it is often not feasible to
capture the geometric details that are important to a person’s
identity.

As an alternative representation, other approaches estimate
per-pixel depth [40] or a voxelized representation [19] from
a single image, In principle, such representations are not
limited to constrained shape space and given enough res-
olution can reconstruct details outside the space of 3DMMs.
However, existing methods are trained with synthetic training
data that is created using 3DMMs and thus inherently fail to
capture the diversity of real faces.

In this work, our goal is to accurately reconstruct 3D
geometry from a single image for faces “in-the-wild” with
variations in viewpoint, lighting, and facial appearance. To
this end, we propose to combine the flexibility and expres-
siveness of a depth-based representation with the regularized
space of 3DMMs. We train a CNN that predicts per-pixel
depth from the input image. Since depth estimation is an
ambiguous task, we further incorporate a module that pre-
dicts 3DMM parameters from the image, which we use to
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Fig. 1. We introduce a method for 3D face reconstruction from a single
image using a depth-based representation. We obviate the need that real
training images are paired with ground truth depth, pairing them instead
with a second view of the same person and using multi-view supervision.
Without post-processing refinement, our results capture the identity of the
person better than a state-of-the-art 3DMM estimation method [43].

regularize the depth estimation. At test time, we only use
the depth estimation network to infer 3D face geometry that
captures facial features that contribute to the identity of the
person (see Figure 1).

Training such a network to handle real-world variations
requires a large-scale training set of real images with per-
pixel depth labels. Creating such a dataset is challenging
and would require a complex, calibrated acquisition system.
On the other hand, it is much easier to capture multiple
images of a person (from multiple viewpoints), and this gives
rise to a weaker form of supervision: two viewpoints of the
same person when aligned using the correct depth should be
photo consistent. We do not assume prior knowledge of the
relative viewpoint transformation between the two images.
Instead, we perform joint depth and viewpoint estimation
in our network and use the resulting photometric error as
a training loss. While similar photo-consistency losses have
been employed for general depth estimation tasks [56], faces
are non-Lambertian surfaces and are prone to self occlusions.
These impose specific challenges that we address by intro-
ducing occlusion and suitability masks, which measure the



diffuseness of a pixel.
In principle, one could use multi-view stereo (MVS) meth-

ods [39] (that utilize a photo-consistency loss) to reconstruct
geometry first, and use it to train a depth estimation network
subsequently. However, MVS methods usually require a
large number of calibrated images to produce a robust 3D
reconstruction. In contrast, by directly embedding this as a
loss function in our reconstruction network, we can learn
depth estimation from a smaller set of uncalibrated images.

We motivate our network design via extensive ablation
studies and show that we achieve state-of-the-art perfor-
mance quantitatively. We also present qualitative results on
challenging real test images. In summary, our contributions
are the following:
• A novel network architecture that combines the flexibility

of a depth map with the regularized shape space of a
3DMM to produce accurate and robust monocular 3D face
reconstructions.

• A joint depth and viewpoint estimation network in con-
junction with novel photometric losses (robust to non-
Lambertian shading and self-occlusions) that allow train-
ing with real unlabeled images.

• Combining both synthetic and multi-view real image
datasets (Multi-PIE [15] in our experiments), leading to
state-of-the-art 3D face reconstruction performance both
in quantitative and qualitative evaluations.

II. RELATED WORK

a) 3D Morphable Models: In their seminal work, Blanz
and Vetter [3] introduced the notion of 3D Morphable Models
(3DMMs) – a low dimensional linear representation for facial
geometry and texture that they constructed by applying PCA
to neutral face scans. In subsequent work, 3DMMs have
been extended to include facial expressions [8] and signifi-
cantly more facial variations [55] and non-linear morphable
models [47]. Traditional 3D face reconstruction methods
iteratively optimize the 3DMM parameters (pose and identity
and expression coefficients) to best align the model to image
cues including texture [4], image edges [35], facial landmark
points [7], [12], [45], and optical flow [6]. Several methods
also perform a joint fitting to multiple images of a subject [1],
[30]. While such optimization methods often enable fast 3D
face tracking, they either rely on statistical priors or good
initialization and thus are prone to failures in challenging
conditions. Moreover, they produce smooth reconstructions
because of the 3DMM representation that are often refined
using shape-from-shading approaches [11], [42], [37].

b) Learning 3D Face Reconstruction: Instead of rely-
ing on optimization-based methods, recent approaches have
explored using deep neural networks to directly regress
3DMM parameters from a single image [21], [46], [57], [27],
[44]. While such methods achieve impressive results, their
main drawback is that they are limited to the shape space
represented by the 3DMM. To overcome this limitation,
alternative representations in the form of normal maps [41],
depth maps [40], voxels [19], and dense facial correspon-
dences [16], [54] have been proposed. Recent work [38]

also explored training a generative model for unsupervised
learning of 3D face shape. In our approach, we choose a
depth map based representation which is flexible enough
to capture geometric details. At the same time, we also
incorporate a 3DMM estimation module to regularize the
depth estimation.

Due to the difficulties in obtaining paired images
and ground truth 3D shape information, many learning-
based approaches rely on synthetic datasets created using
3DMMs [33], [34], [40]. While a synthetic data generation
pipeline is ideal for generating all the necessary training
signals, it is still a challenge to generalize models trained
on such data to real images. In an attempt to address
this challenge, Kim et al. [25] introduce a bootstrapping
technique to match the distribution of the coefficients of the
3DMM sampled from the synthetic dataset to those of real
images. As an alternative solution, several methods use an
optimization-based method to fit 3DMMs to real images and
use these fittings as ground truth for training [57], [46], [41].
Finally, more recent approaches have proposed unsupervised
training strategies [43], [13], which incorporate a rendering
module to render the predicted 3DMM and rely on an image-
similarity loss. All these approaches commit to the 3DMM
representation (either as the output representation or in the
training data) and suffer from the loss of accuracy and
generalizability that this approximation brings. In contrast,
we use a more general depth map representation and train it
with a photo-consistency loss on pairs of multi-view images
of a subject captured at the same time instance. We show
that this leads to more accurate and robust reconstructions.

c) Unsupervised Training for Depth Estimation: Sev-
eral methods explore 3D inference from a single image
by learning from registered 2D images, such as stereo
pairs [10], [22], [14] or multi-view images with known
camera parameters [52], [48]. Other methods assume having
access to multiple images with no known relative viewpoint
transformation [32], [49], [56]. Our approach is inspired by
the recent success of these methods. However, faces are
non-Lambertian surfaces, and the multi-view images often
have large baselines that lead to self-occlusions. This leads
to errors while applying photoconsistency losses based on
image warping alone. We introduce novel loss functions to
overcome these challenges.

III. APPROACH

A. Overview

Given a face image I , we seek to train an image-to-image
translation network to estimate a depth image D, which
encodes the per-pixel depth (i.e., distance from the camera)
for the face region. We choose this representation because
it can capture geometric details that are not represented by
a 3DMM. We train this network with two types of data:
(1) rendered synthetic data where we have access to paired
image and depth maps which provide direct supervision, and
(2) pairs of real images of the same subject from different
viewpoints taken at the same time instance. While the latter
type of data is crucial to generalize our method to unseen
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Fig. 2. Our goal is to train DepthNet, f(·), which predicts a depth map from a single input image at test time. During training, we also train 3DMMNet,
g(·), which predicts 3DMM parameters from an input image. We define a loss that forces the depth predicted by f(·) to be similar to the depth obtained
from the 3DMM. We also train our network with pairs of multi-view images (I1, I2) of the same subject. We use the predicted depth maps for these
images to warp one view to the other (I2→1) and define a photo-consistency loss. This loss is weighted by a suitability mask predicted by h(·). This
mask measures the diffuseness of pixels in the input and avoids computing the photo-consistency error in regions with self-occlusions and non-Lambertian
surface properties.

real data, it does not provide a direct supervision signal.
Instead, we utilize a photo-consistency loss by warping one
of the given images to the other based on the predicted depth
and comparing pixel similarity. We do not assume that the
relative viewpoint transformation between the paired images
is known, and instead estimate it with a view estimation
sub-network. This allows us to generalize to uncalibrated
capture setups where this information is not known apriori.
Both to assist with viewpoint estimation and to also act as
a regularizer for per-pixel depth estimation, we additionally
incorporate a 3DMM prediction sub-network, which predicts
the shape and expression parameters of a morphable model
for each input image. Figure 2 shows the overall network
architecture. During test time, we only utilize the depth
estimation network. Next, we discuss different components
of this architecture as well as the losses we employ for
training.

B. Network Architecture

a) Depth Estimation Network (DepthNet): Given a face
image I ∈ RM×N×3, we seek to train an image-to-image
translation network, DepthNet, f(·), to estimate a depth
image D = f(I) ∈ RM×N×1. For each pixel I(i, j) in the
face area, D(i, j) represents the distance of the pixel (i, j)
from the camera. We use a U-Net architecture [36] for f ,
similar to Sela et al. [40]. We refer to the supplementary
material for details.

b) 3DMM Estimation Network (3DMMNet): Since
depth prediction alone is an ambiguous task, we utilize
3DMMs for regularization. As in previous work [8], [11],
[45], we represent the 3D face geometry, S, as a 3D mesh
with fixed topology and vertex positions computed as:

S3D = S̄ + αidGid + αexpGexp, (1)

where S̄ denotes the average face shape and G = [Gid, Gexp]
represent the identity and expression bases of the linear
3DMM; we use the bases from [29] and [8] for identity and
expression respectively. Finally, α = [αid, αexp] represent

the image specific 3DMM identity and expression parameters
respectively. This 3D mesh can be projected onto the 2D
image as:

S2D = Π(RS3D + t), (2)

where Π denotes the projection operator (in our experiments
we employ perspective projection with fixed focal length)
and R, t denote the extrinsic view transformation.

Given an input image I , we train 3DMMNet, g(·), that
estimates both the 3DMM parameters, α, and the camera
pose for I , V = (R, t). We use a DenseNet [17] architecture
for g(·) and provide details in the supplementary material.

We train the f(·) and g(·) networks in a hybrid manner
using both synthetic data (where we have access to ground
truth shape and 3DMM parameters) and real data (which
consists of pairs of multi-view images which provide indi-
rect supervision). Next, we describe the loss functions and
datasets.

C. Learning 3DMM Inference: 3DMMNet

In this section, we detail the loss functions we use to train
the 3DMM estimation network, g(·).

a) 3DMM parameter regression.: Given an input image
with ground truth 3DMM parameters α̂ = [α̂id, α̂exp], we
define an L1 loss to penalize the parameters, α = [αid, αexp],
predicted by g as:

Egα = λ1‖αid − α̂id‖+ λ2‖αexp − α̂exp‖ (3)

In case of synthetic data the ground truth parameters are
known apriori. For real images, we use the identity shape
regression network of Tran et al. [46] to predict α̂id and
treat this as ground truth. Since this network does not predict
the expression parameters, we set λ2 = 0 for real images.
Otherwise we set λ1 = λ2 = 1.0.

b) Cross-image 3DMM parameter consistency.: When
training our network with synchronized multi-view images
of a subject, we enforce consistency in the inferred 3DMM
parameters. In particular, this loss function enforces that
inferred 3DMM parameters are consistent for pictures of



the same person under different conditions such as varying
viewpoints and pose. This does not require us to know the
value of these parameters, but just their labels. As a result, we
have the following consistency loss for image pair, (I1, I2):

Egpair = ‖gid(I1)− gid(I2)‖+ ‖gexp(I1)− gexp(I2)‖. (4)

c) View estimation by landmarks re-projection.: As
previously mentioned, given an input image, g predicts both
the 3DMM parameters, α, and the camera pose V = (R, t).
To learn camera pose, we use a loss based on 2D-3D
correspondences. Specifically, we project a specific set of
3D landmark vertices from the 3DMM mesh, L3D, to the
input image to obtain the projected 2D landmarks, L2D, and
minimize their distance from the ground truth 2D landmark
points detected on the input image, L̂2D:

Egland = ‖L2D(α,V)− L̂2D‖ = ‖Π(RL3D + t)− L̂2D‖.
(5)

Here L3D depends on the 3DMM parameters, α. In case of
synthetic data L̂2D is known. For real images we use the
network proposed in [5] to predict the 2D landmark points.

The combined training loss for g is then defined as:

Eg = Egα + Egpair + Egland. (6)

All three losses are applied to both synthetic and real data,
with the exception that when evaluating Egα for real data, we
only consider the identity parameters.

D. Learning Depth Inference: DepthNet

When training the depth estimation network, we use a
normalized depth representation to ease training. Specifically,
we assume the tip of the nose is always at (0, 0, 0). We pre-
crop the input images such that the tip of the nose is also
roughly at the center of the image. Then, the z−coordinate
of the camera location defines the distance between the face
and the camera. Given a depth value D, we convert it to D′

by subtracting this camera-face distance (along the normal
of the image plane) and normalizing the range to [0, 1]:

D′ = a(D − ξV ) + c, (7)

where ξV denotes camera-face distance and is obtained from
the view matrix V . a and c are constant normalization factors
to normalize the range of D′ into [0, 1]. Both a and c are
manually defined before training. In our experiments, we find
that training with normalized depth values results in a more
stable training process.

a) Supervision from synthetic data.: For synthetic data,
we employ an L1 loss between the predicted D = f(I) and
ground truth D̂ depth values:

Efdepth = ‖D − D̂‖. (8)

In addition, following [40], we introduce a normal map
regression loss which we find adds to the visual quality and
the smoothness of the estimated depth map:

Efnormals = ‖ND −ND̂‖. (9)

Fig. 3. Multi-view photo-consistency loss function: For an image pair
with known view parameters, a pixel in one view, corresponds to a 3D
location and thus can be reprojected into the other view. Therefore the
color differential for two corresponding pixels can be used to optimize the
3D location.

ND denotes the normal of each pixel in the image computed
either from predicted or from ground truth depth values using
finite differences.

b) Regularization with 3DMM.: Since the predicted
3DMM shape is expected to be accurate at a coarse scale,
we use it to regularize the depth prediction. Specifically,
given the predicted 3DMM parameters and the camera pose,
we render a depth map from 3DMM to obtain DS . This
rendering is done by projecting each vertex of the 3DMM
into the image space and recording its depth value; we handle
occlusions by z-buffering. We use DS as a regularization
term for the estimated depth using an L2 loss function:

Ef3DMM = λ3‖D −DS‖2. (10)

We set λ3 = 0.02 and note that this loss is back-propagated
only to DepthNet.

c) Multi-view photo-consistency.: With pairs of
real/synthetic images of the same subject captured at
the same time instance, (I1, I2), we define a multi-view
photo-consistency loss, as illustrated in Fig. 3, via view-
synthesis, similar to SfM-Net [49]. Given the depth maps
(f(I1), f(I2)) and the view parameters (V1,V2) estimated
for both images, we warp I2 to the viewpoint of I1 and
measure the image similarity loss:

Efmultiview = ‖I1 − I(2→1)‖
= ‖I1 − w(I2,V1,V2, f(I2))‖,

(11)

where I(2→1) represents the warped image and w represents
the warping operation, which uses the estimated camera
poses as well as the depth maps.

There are essential problems with applying such a view
synthesis based loss for 3D face reconstruction. Variations
in lighting, the non-Lambertian reflectance properties of the
face, and self-occlusions caused by large differences in the
two viewpoints naturally lead to violations of this constraint.
Next, we describe how we make our photo-consistency loss
robust to these problems.

Given a predicted shape S and two viewpoints (V1,V2),
not all parts of S are visible in both views. Therefore, we
update the warping based image similarity loss to incorporate
an occlusion mask:

Efmultiview = ‖M o � (I1 − I(2→1))‖, (12)



where � represents the Hadamard product. The occlusion
mask M o is a function of (S,V1, V2):

M o = m(S,V1,V2) (13)

Since we do not know the ground truth shape S, computing
M o is not trivial. We approximate the computation of Mo

using predicted 3DMM parameters. To simplify the training
process, we warp the morphable model depth from V1 to
V2 using the bilinear sampler and compute the discrepancy
with the original 3DMM depth at V2. We apply a threshold
(0.05 in our experiments) on the discrepancy to decide if this
pixel is occluded or not.

An inherent problem in measuring the photo-consistency
loss for structure-from-motion (or image warping based
losses) is that the same physical point may lead to in-
consistent pixel colors across different views. This multi-
view inconsistency is usually due to varying illumination
conditions and non-Lambertian surfaces (see Figure 4). One
possible solution is to identify such inconsistencies in a pre-
processing stage. For example, S2Dnet [50] uses synthetic
data to train a network to remove the specular component
of surface appearance and produces diffuse-only images
that can be used in a multi-view stereo method. However,
generating synthetic face images with realistic reflectance
properties (e.g., sweat, makeup, oily skin) is not a trivial task.
Therefore, we opt for the alternative approach of training a
suitability network, h(·), which predicts a ”suitability map”
C = h(I) ∈ RM×N×1 for an image I where each pixel
C(i, j) encodes how suitable the corresponding pixel is for
a photo-consistency loss, e.g., a measure of its diffuseness.
Instead of enforcing this map to be binary, we use a con-
tinuous weighting scheme and update the view consistency
loss to be:

Ef,hVS = ‖h(I1)�M o � (I1 − I(2→1))‖, (14)

where � represents the Hadamard product. We train h in
an unsupervised way and to avoid the trivial solution of all
zeros, we define a regularization loss:

Ehreg = ‖C − 1‖, (15)

Note that our suitability map estimation is similar to the
work of Zhou et al. [56], which also predicts an explain-
ability map between two views to model occlusions and
non-diffuse surfaces. Similar ideas have also been applied
to facial expression editing [31], where an editing mask
is produced, in an unsupervised manner, for the purpose
of localized edits. Since we have an intermediate shape
representation via the 3DMM inference, in our work, we
decouple inconsistencies due to occlusions and non-diffuse
surfaces. While we approximate occlusions analytically with
the 3DMM shape, we use an additional network only to
estimate suitability based on surface reflectance properties.

In summary, the final objective function for training is:

Ef,h = Efdepth +Efnormals +Ef3DMM +Ef,hmultiview +Ehreg. (16)

Fig. 4. The assumption of color-consistency is often violated because of
different camera sensors or surface reflectance, as shown in this example of
two synchronized Multi-PIE images from different views.

Fig. 5. For training, we utilize paired image from Multi-PIE with pre-
computed landmark annotations (left), color augmented Multi-PIE images
(middle), and synthetic faces (right).

While Efdepth and Efnormals are computed for only synthetic
data, the remaining losses are computed both for real and
synthetic data.

IV. TRAINING DATA AND PROCEDURE

We train our network with both synthetic and real data. To
generate synthetic data, we use 3500 3DMM configurations
from the 3DMM fits provided in the 3DDFA dataset [57].
We render each 3DMM configuration from 10 different
viewpoints using the path-tracing method in the Mitsuba
renderer [20]. The views are obtained by keeping the 3D
face frontal and sampling the azimuth angle in the range
[−45, 45] with increments of 5, elevation angle in the range
[−30, 30] with increments of 5, and in-plane rotations in the
range [−20, 20] with increments of 5. We use a set of 90
environment maps available online and up to 5 randomly
sampled point light positions to simulate varying illumination
conditions, as seen in Figure 5, right.

For real data, we use the Multi-PIE dataset [15], which
provides images of 337 subjects captured under 15 view-
points and 19 illumination conditions. In our experiments,
we used 9 viewpoints and discarded the views where faces
are upside down or close to 90o profile. Since the Multi-
PIE dataset was captured in a restricted lab environment, we
further apply color augmentation. Specifically, we select 200
images from the CelebA dataset [28] as reference images. We
apply a histogram matching algorithm in the face region of
Multi-PIE images to match those CelebA examples. Given a
pair of images of the same subject from Multi-PIE, we apply
the same color transformation on both images to preserve
photo-consistency. We detect landmark points on each Multi-
PIE image using the method of Bulat et al. [5], which we
subsequently utilize for 3DMM and viewpoint estimation.
We show examples in Figure 5, left.

During training, we first train 3DMMNet for regressing
3DMM parameters and viewpoints. Upon convergence, we



Fig. 6. Qualitative results of our depth prediction network on in the wild
faces. Our reconstructions faithfully capture facial geometric features under
various pose, expression, etc.

start training DepthNet along with the suitability network
while keeping the parameters of 3DMMNet fixed. In both
cases, we use the Adam [26] optimizer with a learning rate
of 0.0002. At test time, we only use DepthNet for inference.

V. EVALUATION

A. Qualitative Evaluation

We provide qualitative results of our method in Figures 1
and 6 by testing on random real images. More results are
provided in the supplementary material. In addition, we
provide qualitative comparisons to state-of-the-art methods
that utilize different 3D representations. Figure 7 shows
comparisons to the method of Sela et al. [40] which also
uses a depth-map based representation. With both synthetic
and real images in training, our method generalizes to unseen
real data better and predicts much more accurate depth
maps. In Figure 8, we show comparisons to state-of-the-
art methods that utilize a voxel [19] and 3DMM based
representations [43]. Although these methods provide smooth
reconstructions, our results better preserve the identity of the
subject by capturing facial features outside the shape space
of a 3DMM or a limited voxelized volume.

Fig. 7. We compare the depth map predicted by our method and the method
of Sela et al. [40]. Our predictions are high quality and better capture the
geometric details.

Fig. 8. We compare to state-of-the-art that uses volumetric [19] (row 3) and
3DMM based representation [43] (row 4). While volumetric representations
suffer from limited resolution, 3DMMs are not flexible enough to capture
geometric details. In contrast, our depth predictions better preserve the
identity of the subjects.

We note that DepthNet implicitly learns to predict depth
for only the face region without any special treatment of the
background. This is possible because of two factors. First, for
synthetic data, the ground truth depth is defined only for the
face region. Second, through 3DMM regularization, we are
enforcing the network to predict a depth value of 0 outside
the face region. Our method runs at 50fps on an NVIDIA
TitanX GPU, and both the input image and predicted depth
map are at resolution 360× 360.

Fig. 9. Comparing to Feng et al.[9] (right), our results (middle) preserves
better details of the input face, including the identity, the ethnicity, and the
facial expression.

B. Quantitative Evaluation

We evaluate our method on the BU-3DFE dataset [53]
and renderings of 3D faces from the Florence dataset [2].
BU-3DFE provides images and ground truth scans of 100
subjects. Following the evaluation protocol of [40], we
compare the output of DepthNet to this ground truth shape.
We perform this comparison within the face region where we
have per-pixel depth estimates. Since the coordinate systems
used by our network and the BU-3DFE dataset are different,



Mean Err. Std Err. Median Err. 90% Err.
[23] 3.89 4.14 2.94 7.34
[58] 3.85 3.23 2.93 7.91
[33] 3.61 2.99 2.72 6.82
[40] 3.51 2.69 2.65 6.59
Ours 2.95 2.83 2.22 3.26

TABLE I
QUANTITATIVE EVALUATION ON BU-3DFE.

we first perform a dataset-wise average global similarity
transform (global scaling and translation) using the positions
of 9 landmark points. We then perform ICP between our
predicted depth map and the ground truth 3D shape to com-
pute closest point correspondences. We measure the distance
between such correspondences to compute the reconstruction
accuracy. We use ICP only to compute correspondences, the
rigid alignment is not applied to our predicted depth maps.
We compare our results with previous methods in Table I,
where (for normalization purposes) the numbers represent
percentiles of the ground-truth depth range. We also provide
further analysis of the reconstruction accuracy for different
facial expressions in the dataset (Table II). Our method
achieves superior performance and has consistent accuracy
across different expressions.

AN DI FE HA NE SA SU
[23] 3.47 4.03 3.94 4.30 3.43 3.52 4.19
[58] 4.00 3.93 3.91 3.70 3.76 3.61 3.96
[33] 3.42 3.46 3.64 3.41 4.22 3.59 4.00
[40] 3.67 3.34 3.36 3.01 3.17 3.37 4.41
Ours 2.96 3.00 2.85 2.77 2.67 2.95 2.75

TABLE II
THE MEAN ERROR FOR DIFFERENT EXPRESSIONS IN BU-3DFE. LEFT

TO RIGHT: ANGER, DISGUST, FEAR, HAPPY, NEUTRAL, SAD, SURPRISE.

The Florence dataset [2] contains 3D face meshes of 53
subjects. Following [19], we render 20 images for each
subject in 20 different poses and compute the Normalized
Mean Error (average per-vertex Euclidean distance normal-
ized by an outer interocular distance defined in [19]) between
our depth prediction and the ground truth 3D shape. ICP
is used to compute the closest point correspondence for
which we compute the error. As shown in Table III, our
results outperform the previous state-of-the-art method using
volumetric representation [19] and are comparable to the
previous state-of-the-art which used a position map for face
reconstruction [9]. However, as we demonstrate in Figure. 9,
because of the multi-view weak-supervision used in our
system, our reconstruction preserves better facial details
compared to the results of [9], which was a fully supervised
method trained only on a synthetic dataset.

C. Ablation Studies

Using the same architecture and training losses where
applicable, we train two variants of DepthNet with and
without data from Multi-PIE. We observe that the model
trained with Multi-PIE generalizes better to the real world
testing cases (see Figure 10). For example, the shape is more
accurate and more robust to pose variation. When trained
only with synthetic data, the model is prone to errors such

Fig. 10. We compare (a) training DepthNet only using our synthetic dataset
(without Multi-PIE) and (b) training with both synthetic and real images.
Training with real images enables the model to better generalize to real
testing images (notice the misalignment between shape and texture in (a)-
first row.)

as misalignment between shape and texture. Please see the
supplementary material for more ablation experiments.

Ours [19] [57] [18] [9]
NME 0.0475 0.0509 0.0975 0.1253 0.0362

TABLE III
NME ON 3D FACE RENDERINGS FROM THE FLORENCE DATASET.

VI. CONCLUSIONS AND FUTURE WORK

We presented a single-image based 3D face reconstruction
network using a depth-map based representation flexible
enough to capture important geometric features for human
faces. We also employed a 3DMM module for regularization.
We trained our network by supervised losses on synthetic
data and indirect supervision on multi-view real images using
a photo-consistency loss. Training on real images made our
network more robust to variations of viewpoint, illumination,
and expression. Both qualitative and quantitative results
demonstrated the benefit of our approach.

We used the Multi-PIE [15] dataset to illustrate the ef-
fectiveness of a multi-view consistency loss. Our method,
however, is not restricted to images in lab settings since we
do not assume any calibration information to be provided.
Working with multi-view images captured in the wild is an
exciting future direction. While we focus on geometry esti-
mation, using post-processing methods to refine the geometry
further and estimate appearance is also possible.
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[16] R. A. Güler, G. Trigeorgis, E. Antonakos, P. Snape, S. Zafeiriou, and
I. Kokkinos. Densereg: Fully convolutional dense shape regression
in-the-wild. In CVPR, 2017.

[17] G. Huang, Z. Liu, L. van der Maaten, and K. Weinberger. Densely
connected convolutional networks. In CVPR, 2017.

[18] P. Huber, G. Hu, R. Tena, P. Mortazavian, P. Koppen, W. J. Christmas,
M. Ratsch, and J. Kittler. A multiresolution 3d morphable face model
and fitting framework. In Proceedings of the 11th International Joint
Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications, 2016.

[19] A. S. Jackson, A. Bulat, V. Argyriou, and G. Tzimiropoulos. Large
pose 3d face reconstruction from a single image via direct volumetric
cnn regression. In ICCV, 2017.

[20] W. Jakob. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.
[21] A. Jourabloo and X. Liu. Large-pose face alignment via cnn-based

dense 3d model fitting. In CVPR, 2016.
[22] A. F. Junyuan Xie, Ross Girshick. Deep3d: Fully automatic 2d-to-3d

video conversion with deep convolutional neural networks. In ECCV,
pages 740–756. Springer, 2016.

[23] I. Kemelmacher-Shlizerman and R. Basri. 3d face reconstruction from
a single image using a single reference face shape. IEEE Transactions
on Pattern Recognition and Machine Intelligence (PAMI), 33(2):394–
405, 2011.

[24] H. Kim, P. Garrido, A. Tewari, W. Xu, J. Thies, M. Nießner, P. Pérez,
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